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Day-Ahead & Real-Time Markets 

2	  

Sequence of Events  
1. Players Provide Bid Prices to ISO using Forecasts of Prices      & 
Capacities for Next Day 
2. ISO Solves Day-Ahead Clearing using Bids and Expected 
Topology to Set Day-Ahead Quantities & Prices  
3. Players Re-Bid using Observed Prices & Capacities                  
for Next Hour 
4. ISO Solves Real-Time Clearing to Set  Real-Time Quantities            
& Prices  
5. Players Correct Schedules & Get Paid for Day-Ahead Quantities 
& Real-Time Corrections  

ISO (Independent System Operator)  Metrics 
§ Social Surplus 
•  Efficient Allocation of Physical Assets (Plants, Network) 
§ Price Predictability  
•  Day-Ahead & Real-Time Prices Converge (Or Remain Close) 
§ Revenue Adequacy 
•  ISO Does Not Run Into Financial Deficit 
§ Fairness   
•  ISO Does Not Interfere (Biases) Market Transactions 
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Limitations of Deterministic Market Setting 
•  Players are Forced to Summarize Uncertain 

Information using a Single Statistic             
(e.g., Expected Value or Worst-Case Forecast) 

ḡi,t = E[Ḡi,t(!)]

d̄i,t = E[D̄i,t(!)]

•  Day-Ahead Prices Do Not “Factor In” 
    Uncertainty 

•  Real-Time Prices Do Not Converge to            
Day-Ahead Prices 

•  Prices and Payments are Biased :                   
Only a Subset of Players are Benefited 

•  Blocks Entry of New Participants               
(Affects Diversification) :                                           
e.g., Wind, Price-Responsive Demands as we 
will show in the simulations.   
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Prices at Illinois Hub, 2009  
Temporal Price Volatility 



Spatial Price Volatility 
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Lost Opportunity when Ignoring Stochastic 
Structure 
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In one study with 17% wind penetration and full network over  Illinois, we see 5%  
opportunity loss for deterministic dispatch and 1-2% for incorrect correlation modeling 
(see Petra talk) 



The Message(s) 
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I) Deterministic clearing introduces strong distortions between day-ahead 
& expected real-time prices that yield biased (unfair) prices & incentives.   

II) We propose a stochastic clearing formulation in which deviations 
between day-ahead & real-time variables are properly penalized to        
achieve fair pricing & incentives.  

III) Comparisons of deterministic & stochastic settings based on social 
surplus alone are insufficient to fully appreciate the benefits of stochastic 
optimization. We present new metrics.  



Proposal : Stochastic Clearing 

Features: 
- Consistency Between Day-Ahead & Real-Time Market 
- Differences Between Day-Ahead & Real-Time Variables (Including Flows) Are Penalized 
- Does Not Impose Constraints on Day-Ahead Variables (All Information Contained in Scenarios) 
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Expected Social Surplus Pritchard, Zakeri & Philpott, 2011 

Definition: The expected social suplus function is defined as:
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Price Distortions, Premia, & Fairness 

Definition: The price distortions or price premia are defined as the di↵erence

between day-ahead and expected real-time prices
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Expected Payments 

Definition: The expected payments to suppliers and from consumers are:
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Relevance of Fair Prices 

•  Suppliers Benefit More from Positive Premia than Consumers  

•  Fairness Implies that the Market, In Expectation, Behaves as a                  
Pure Real-Time Market  

          - Prevents Day-Ahead Market From Interfering with Real-Time Market Kaye, 1990 

•  How To Enforce Fairness Throughout the System? 
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Uplift Payments 

Definition: We say that suppliers and consumers are whole in expectation if,
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ISO Revenue Adequacy 

Definition: The expected ISO revenue is defined as,

MISO := E

2

4
X

i2G
P g
i (!)�

X

j2D
P d
j (!)

3

5

=
X

i2G
E[P g

i (!)]�
X

j2D
E[P d

j (!)].

The ISO is said to be revenue adequate in expectation if MISO  0.



Properties : Pricing (Single Node) 
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Properties : Pricing (Single Node) 
Proof: Consider the partial Lagrange function:
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The stationarity conditions w.r.t. day-ahead quantities are:
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Properties : Pricing (Single Node) 
Proof (continuation): Rearranging stationarity conditions we obtain,
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Properties : Convergence of Day-Ahead Quantities (Single Node) 
Theorem S-b: If the price distortion M⇡
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Properties : Bounds on Day-Ahead Quantities (Single Node) 
Theorem S-c: The day-ahead quantities are bounded by the real-time quan-

tities as,
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Properties : Zero Uplift (Single Node) 
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Properties : Network System 
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Theorem N-a: Consider the stochastic network clearing model and assume

that the incremental bid costs satisfy �↵d
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Properties : Network System 

Theorem N-c: The day-ahead quantities and flows are bounded by their real-

time counterparts as,
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Example I 

Day-Ahead  
Prices RT Prices 

Expected           
RT Prices 

Expected 
Welfare 

Day-Ahead  
Quantities 

RT 
Quantities 

Payments Costs ISO Revenue 
�↵d M⇡

1
1.0 0.43
0.1 0.058

0.01 0.006
0.001 0.0006

Bid  
Price 

Max  
Distortion 

E[P g
i (!)] E[Cg

i (!)] MISO

Deterministic {250,-5553,3799} {250,5,533} -3504

Stochastic {250,7316,6886} {250,5,533} -12955

Stochastic-WS {250,7555,7055} {250,5,500} -13360

gi ⇡n Gi(!) ⇧n(!) E[⇧n(!)] 'gen

Deterministic {25,50,25} {10,20,20}
{25,25,50} {15,802,412}

{15,280,150} 835{25,50,25} {15,22,22}
{25,75,0} {15,18,18}

Stochastic {25,50,25} {10,276,148}
{25,25,50} {10,790,406}

{10,276,148} 835{25,50,25} {10,20,20}
{25,75,0} {10,18,18}

Stochastic-WS

{25,25,50} {10,821,420} {25,25,50} {10,803,412}
{10,281,150} 800{25,50,25} {10,20,20} {25,50,25} {10,20,20}

{25,75,0} {10,20,20} {25,75,0} {10,20,20}



System II 

' M⇡
n ⇡n

Deterministic -217529 {9,9,9,-205,-208,-273} {100,100,100,100,100,100}
Stochastic -217628 {0.001,0.001,0.001,0,0,0} {96,96,96,307,310,374}

Stochastic-WS -218266 - -
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System II (Transmission Contingencies) 

E[P g
i (!)] E[Cg

i (!)] MISO

Deterministic {5803,4723,5100,-919,9627} {5231,50,3876,47,3387} 40570

Stochastic {5107,3955,3683,7371,9623} {5107,51,3683,46,3383} -118103

Stochastic-WS {4951,3888,3422,7170,9479} {4951,47,3422,45,3079} -118283
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IEEE118 System 



IEEE118 System 

MU 'gen M⇡ M⇡
1 MISO

Deterministic -13,797 344,142 16 280 -833,656

Stochastic 0 343,959 0.0005 0.0017 -818,250

Stochastic-WS 0 343,578 0 0 -818,583

Max Premia Total Uplift 



Dimensions 
1900 Buses 
 261 Generators 
 300 Demands  

Illinois System 



Deterministic 

Stochastic 

Illinois System 

⇡ E[⇧(!)]



The Message(s) 
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•   Deterministic clearing introduces strong distortions between day-ahead 
& expected real-time prices that yield biased (unfair) prices & 
incentives.   

•  We proposed a stochastic clearing formulation in which deviations 
between day-ahead & real-time variables are properly penalized to        
achieve fair pricing & incentives.  

•  We showed that the stochastic clearing formulation has several good 
properties, such as revenue adequacy in expectation and bounded price 
distortions. 

•  We demonstrated through numerical simulations that the price 
distortions are much reduced compared to the deterministic case.  



Open Questions 
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How to Manage Uncertainty in a Decentralized Market?  

How to Solve Stochastic Problems with Large Coupling? 

How to Extend Analysis to More Complicated Settings (Multistage)? 


